Mu Opioid Receptor(MOR) Rabbit pAb  (货号:B20582)

说明书

货号:B20582

规格价格
50ul ¥1080.00 加购物车
100ul ¥2050.00 加购物车
反应 Human,Mouse,Rat
宿主 Rabbit
克隆性 Polyclonal
应用 WBIHCIF/ICC
推荐浓度 WB: 1:500 - 1:2000
IHC: 1:50 - 1:200
IF/ICC: 1:50 - 1:200
理论分子量 10-20kDa/33-55kDa
实测分子量 10-20kDa/33-55kDa
形式 Liquid
保存条件 Store at -20℃. Avoid freeze / thaw cycles.
Buffer: PBS with 0.01% thiomersal,50% glycerol,pH7.3.
偶联物 Unconjugated
阳性对照 mouse brain tissue, rat brain tissue
细胞定位 Cell membrane,Cytoplasm,Multi-pass membrane protein
纯化 Affinity purification

相关产品

查找相关产品 >>

抗原信息

抗原信息 Recombinant fusion protein.
序列 Email For Sequence

靶点信息

研究背景 This gene encodes one of at least three opioid receptors in humans; the mu opioid receptor (MOR). The MOR is the principal target of endogenous opioid peptides and opioid analgesic agents such as beta-endorphin and enkephalins. The MOR also has an important role in dependence to other drugs of abuse, such as nicotine, cocaine, and alcohol via its modulation of the dopamine system. The NM_001008503.2:c.118A>G allele has been associated with opioid and alcohol addiction and variations in pain sensitivity but evidence for it having a causal role is conflicting. Multiple transcript variants encoding different isoforms have been found for this gene. Though the canonical MOR belongs to the superfamily of 7-transmembrane-spanning G-protein-coupled receptors some isoforms of this gene have only 6 transmembrane domains.
基因ID 4988
基因名 OPRM1
Swiss P35372
别名 OPRM1;LMOR;M-OR-1;MOP;MOR;MOR1;OPRM
组织表达 Expressed in brain. Isoform 16 and isoform 17 are detected in brain.
功能 Receptor for endogenous opioids such as beta-endorphin and endomorphin. Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone (PubMed:7905839, PubMed:7957926, PubMed:7891175, PubMed:12589820, PubMed:9689128). Agonist binding to the receptor induces coupling to an inactive GDP-bound heterotrimeric G-protein complex and subsequent exchange of GDP for GTP in the G-protein alpha subunit leading to dissociation of the G-protein complex with the free GTP-bound G-protein alpha and the G-protein beta-gamma dimer activating downstream cellular effectors (PubMed:7905839). The agonist- and cell type-specific activity is predominantly coupled to pertussis toxin-sensitive G(i) and G(o) G alpha proteins, GNAI1, GNAI2, GNAI3 and GNAO1 isoforms Alpha-1 and Alpha-2, and to a lesser extent to pertussis toxin-insensitive G alpha proteins GNAZ and GNA15 (PubMed:12068084). They mediate an array of downstream cellular responses, including inhibition of adenylate cyclase activity and both N-type and L-type calcium channels, activation of inward rectifying potassium channels, mitogen-activated protein kinase (MAPK), phospholipase C (PLC), phosphoinositide/protein kinase (PKC), phosphoinositide 3-kinase (PI3K) and regulation of NF-kappa-B. Also couples to adenylate cyclase stimulatory G alpha proteins. The selective temporal coupling to G-proteins and subsequent signaling can be regulated by RGSZ proteins, such as RGS9, RGS17 and RGS4. Phosphorylation by members of the GPRK subfamily of Ser/Thr protein kinases and association with beta-arrestins is involved in short-term receptor desensitization. Beta-arrestins associate with the GPRK-phosphorylated receptor and uncouple it from the G-protein thus terminating signal transduction. The phosphorylated receptor is internalized through endocytosis via clathrin-coated pits which involves beta-arrestins. The activation of the ERK pathway occurs either in a G-protein-dependent or a beta-arrestin-dependent manner and is regulated by agonist-specific receptor phosphorylation. Acts as a class A G-protein coupled receptor (GPCR) which dissociates from beta-arrestin at or near the plasma membrane and undergoes rapid recycling. Receptor down-regulation pathways are varying with the agonist and occur dependent or independent of G-protein coupling. Endogenous ligands induce rapid desensitization, endocytosis and recycling whereas morphine induces only low desensitization and endocytosis. Heterooligomerization with other GPCRs can modulate agonist binding, signaling and trafficking properties. Involved in neurogenesis. Isoform 12 couples to GNAS and is proposed to be involved in excitatory effects (PubMed:20525224). Isoform 16 and isoform 17 do not bind agonists but may act through oligomerization with binding-competent OPRM1 isoforms and reduce their ligand binding activity (PubMed:16580639).
研究领域

实验步骤

实验步骤

文献引用

暂无数据

客户评价

未选文件 允许的格式:jpg,png 每张图片最大1M,支持多选

Mu Opioid Receptor(MOR) Rabbit pAb 有 0 条评价