KCNAB1 Rabbit pAb  (货号:B18498)

说明书

货号:B18498

规格价格
50ul ¥1080.00 加购物车
100ul ¥2050.00 加购物车
反应 Human,Mouse,Rat
宿主 Rabbit
克隆性 Polyclonal
应用 WB
推荐浓度 WB: 1:200 - 1:2000
理论分子量 44kDa/45kDa/46kDa
实测分子量 45-50kDa
形式 Liquid
保存条件 Store at -20℃. Avoid freeze / thaw cycles.
Buffer: PBS with 0.01% thiomersal,50% glycerol,pH7.3.
偶联物 Unconjugated
阳性对照 U-251MG,293T,Mouse brain,Mouse kidney,Mouse heart,Rat brain
细胞定位 Cell membrane,Cytoplasm,Cytoplasmic side,Membrane,Peripheral membrane protein
纯化 Affinity purification

相关产品

查找相关产品 >>

抗原信息

抗原信息 Recombinant fusion protein.
序列 Email For Sequence

靶点信息

研究背景 Potassium channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. This member includes distinct isoforms which are encoded by alternatively spliced transcript variants of this gene. Some of these isoforms are beta subunits, which form heteromultimeric complexes with alpha subunits and modulate the activity of the pore-forming alpha subunits.
基因ID 7881
基因名 KCNAB1
Swiss Q14722
别名 KCNAB1;AKR6A3;KCNA1B;KV-BETA-1;Kvb1.3;hKvBeta3;hKvb3
组织表达 In brain, expression is most prominent in caudate nucleus, hippocampus and thalamus. Significant expression also detected in amygdala and subthalamic nucleus. Also expressed in both healthy and cardiomyopathic heart. Up to four times more abundant in left ventricle than left atrium.
功能 Cytoplasmic potassium channel subunit that modulates the characteristics of the channel-forming alpha-subunits (PubMed:7499366, PubMed:7603988, PubMed:17156368,PubMed:17540341, PubMed:19713757). Modulates action potentials via its effect on the pore-forming alpha subunits (By similarity). Promotes expression of the pore-forming alpha subunits at the cell membrane, and thereby increases channel activity (By similarity). Mediates closure of delayed rectifier potassium channels by physically obstructing the pore via its N-terminal domain and increases the speed of channel closure for other family members (PubMed:9763623). Promotes the closure of KCNA1, KCNA2 and KCNA5 channels (PubMed:7499366, PubMed:7890032, PubMed:7603988, PubMed:7649300, PubMed:8938711, PubMed:12077175, PubMed:12130714, PubMed:15361858, PubMed:17540341, PubMed:19713757). Accelerates KCNA4 channel closure (PubMed:7890032, PubMed:7649300, PubMed:7890764, PubMed:9763623). Accelerates the closure of heteromeric channels formed by KCNA1 and KCNA4 (PubMed:17156368). Accelerates the closure of heteromeric channels formed by KCNA2, KCNA5 and KCNA6 (By similarity). Isoform KvB1.2 has no effect on KCNA1, KCNA2 or KCNB1 (PubMed:7890032, PubMed:7890764). Enhances KCNB1 and KCNB2 channel activity (By similarity). Binds NADPH; this is required for efficient down-regulation of potassium channel activity (PubMed:17540341). Has NADPH-dependent aldoketoreductase activity (By similarity). Oxidation of the bound NADPH strongly decreases N-type inactivation of potassium channel activity (By similarity).

实验步骤

实验步骤

文献引用

暂无数据

客户评价

未选文件 允许的格式:jpg,png 每张图片最大1M,支持多选

KCNAB1 Rabbit pAb 有 0 条评价